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Introduction

Braid group = the fundamental group of the space of complex polynomials
with distinct roots.

Natural generalizations of the braid group are the fundamental groups of
spaces of nonsingular hypersurfaces on algebraic varieties.

It is the case when we try to generalize to the bigger dimensions the
method of braids in the theory of real algebraic curves.
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Summary

For the space of PGL(2,C)-orbits of the space of complex trigonal curves
on Hirzebruch surface Σk, a stratification and a cell structure of each
stratum has been constructed using the Lyashko-Looijenga mapping. The
cell structure is described via Grothendiek’s dessins d’enfants.

For the space of nonsingular complex trigonal curves on the Hirzebruch
surface Σk and for its subspace of the curves with the simple roots of the
discriminant of the curve equation, the fundamental groups (for k = 1)
and their images in the spherical braid group (for any k) have been
calculated.
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Definitions

q : Σk → P 1 is the (complex) Hirzebruch surface, i.e. a rational ruled
surface with the exceptional section s, s2 = −k < 0. The fibers of q are
vertical.

A trigonal curve is a curve A ⊂ Σk disjoint from s(P 1), with the restriction
q : A→ P 1 of degree 3 and being not a cube of a rational curve.

Contraction: s(P 1) 7→ point
∩ ∩

Σk → P(1,1,k)– the weighted projective plane with the
∪ ∪ coordinates x0, x1, y of weights 1, 1, k.
A → y3 + b(x0, x1)y + w(x0, x1) = 0,

where b, w are homogeneous polynomials of degrees 2k, 3k and y =∞ is
the image of s.

b, w are determined by A uniquely up to the transformation

(b, w) 7→ (t2b, t3w), t ∈ C∗.

So the set of all trigonal curves on Σk is the weighted projective space
P(2, . . . ,2,3, . . . ,3) of complex dimension 5k + 1.
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The origin of the problem

Figure : The pencil of lines gives a braid

Correspondence:

A curve with a singular point. A surface of degree 5 with two singular points.
The pencil of lines centered in The pencil of planes centered in
the point. the line through the points.
A braid in 3 strings. A family of trigonal curves.
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Historical remarks

In 1999, the method we are using here (a modification of Grothendiek’s
dessin d’enfant) was offered in
S. Yu. Orevkov. Riemann existence theorem and construction of real
algebraic curves//Annales de la Faculté des Sciences de Toulouse, 2003,
12(4), p. 517-531,
and applied to real trigonal curves also in
Degtyarev A., Itenberg I., Kharlamov V. On deformation types of real
elliptic surfaces. // Amer.J.Math. 130(2008), no.6, p.1561-1627,
where equivariant deformations of real trigonal curves on a ruled surface
over a base of any genus were studied and an explicit description of the
deformation classes of M - and (M − 1)-curves were obtained.

This method was developed, both for complex and real trigonal curves, in
the recent book
Degtyarev A. Topology of algebraic curves. An approach via dessins
d’enfants. de Gruyter Studies in Mathematics, 44. Walter de Gruyter &
Co., Berlin, 2012. xvi+393pp.



Summary Definitions Historical remarks The space of trigonal curves Trigk Graphs of a trigonal curve The Lyashko-Looijenga mapping A cell structure of Trigk/PGL(2,C) Our results

The j-invariant of a trigonal curve

j-invariant of the curve A : y3 + b(x)y + w(x) = 0

d = 4b3 + 27w2 is the discriminant in y of the curve equation.
j : P1 → P1, j = 4b3/d = 1− 27w2/d is the j-invariant of the curve A.

Gr(j) ⊂ P1 ×P1 is the curve 4b3(x)y0 − d(x)y1 = 0,
x = [x0 : x1], y = [y0 : y1] ∈ P1. It’s the union of the graph of the
function j and the lines g.c.d.(b3, d) = 0 with the corresponding
multiplicities.
A and Gr(j) uniquely determine to each other.
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The j-invariant of a trigonal curve

j-invariant of the curve A : y3 + b(x)y + w(x) = 0

Jconst ⊂ P(2, . . . ,2,3, . . . ,3) is the set of trigonal curves on Σk with
the constant j-invariant.
Jconst = {y3 + b(x)y + w(x) = 0|b = λa2, w = a3} ∼= P 1 × P k.
Denote P(2, . . . ,2,3, . . . ,3) \ Jconst by Trigk and P(2, . . . ,2,3, . . . ,3)
by Trigk.

Trigk is nonsingular.

{y3+by=0}≅
        ≅P2k

Jconst≅P1×Pk {y3+w=0}≅
        ≅P3k

}Trigk
SingTrigk

Figure : The space Trigk of trigonal curves on Σk
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The action of PGL(2,C)

PGL(2,C) = AutP 1 acts on the arguments of the polynomials b(x),
w(x) in the curve equation. So it acts in Trigk and in the space
{Gr(j)|j = 4b3/d = 1− 27w2/d}.

{y3+by=0}≅
        ≅P2k

Jconst≅P1×Pk {y3+w=0}≅
        ≅P3k

}Trigk
SingTrigk

Figure : The space Trigk of trigonal curves on Σk

The closure of the orbit of a curve Gr(j) consists of this orbit and the set
{triple of lines (l0x0 + l1x1)p(c0x0 + c1x1)6k−p(b1(α)y0 − d1(α)y1) =
0|[l0 : l1], [c0 : c1] ∈ P1, α = [a0 : a1] is a root of degree p of g.c.d.(b3, d)
b1 = 4b3/(a0x0 − a1x1)p, d1 = d/(a0x0 − a1x1)p }
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The action of PGL(2,C)

Trigk/PGL(2,C) is second countable.

A limit of a sequence in Trigk/PGL(2,C) is unique.

Corollary

Trigk/PGL(2,C) is a Hausdorff space.

It’s not true for Trigk/PGL(2,C)
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The projection rd : Trigk → Trigk/PGL(2,C)

The projection rd : Trigk → Trigk/PGL(2,C)

A ∈ Trigk is symmetric, if ∃g ∈ PGL(2,C) : g(A) = A.
Symm is the set of all symmetric curves.

Theorem

Let T3 ⊂ Trigk \ Symm be the set of curves with the total number of simple
roots of the polynomials b(x), w(x), d(x) being not less than 3. Then the
projection rd : T3 → T3/PGL(2,C) is a locally trivial principal
PGL(2,C)-fibration and rd(T3) is manifold.
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Trichotomic graph of a trigonal curve

A : y3 + b(x)y + w(x) = 0
S. Yu. Orevkov. Riemann existence theorem and construction of real algebraic
curves//Annales de la Faculté des Sciences de Toulouse, 2003, 12(4), p.
517-531:

A trigonal curve
up to the transformation ↔ the colored graph Γ(j) = j−1(RP 1)
(x, y) 7→ (x, λy), λ 6= 0 on S2

S2 ∼= CP 1 j→ CP 1 ⊃ RP 1, j = 4b3

d
= 1− 27w2

d

Trichotomic graph Γ(j):

0 1
RP :1

ja

b

a

1

2

3

5

4

6

For A with j = const we have no Γ(j) and use only Gr(j).
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Fat vertices

A fat vertex corresponds to a common root x of b, w. There are 3 kinds of fat
vertices: •-vertex, ◦-vertex and waved-vertex depending on
3multx(b(x) = 0) >,<,= 2multx(w(x) = 0). For ◦-vertex and waved-vertex
x is a singular point of the trigonal curve.

vertical flex

contraction

Curve A:

G(jA):

Г(jA):

black fat vertex
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Tetratomic graph of a trigonal curve

We orient the faces of a trichotomic graph Γ in the chessboard order and
obtain a tetratomic graph TΓ by a partition of every face of Γ on simply
connected parts; the boundary of every part can be glued into a wedge of
colored RP1 and segments which number r+ or r− depends only on the
orientation of the face of Γ, the center of the wedge being ∞.

0 1
RP :1

j

t1...

tr

The tetratomic graph of a curve A(j) ∈ Trigk:
t1, . . . , tr are all the imaginary critical values of j,
St(j) is the star in CP1 with the center at ∞ and the ray ends in ti (a ray
may contain another one),
TΓ(j) = Γ(j) ∪ j−1(St(j)) is the tetratomic graph of a trigonal curve.
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Riemann’s data of a trigonal curve

The pair (TΓ(j), {t1, . . . , tq}) with {t1, . . . , tq} being the set of all critical
values of j is the Riemann’s data of the curve A(j) (see S.K.Lando,
A.K.Zvonkin. Graphs on Surfaces and Their Applications,
Springer-Verlag, 2004.)

Let TΓ be a tetratomic graph with ◦-vertices of valence 0 mod 4,
•-vertices of valence 0 mod 6 and fat-vertices of valence 0 mod 2. Due to
Lando and Zvonkin TΓ with the set {0, 1,∞, t1, . . . , tr} ⊂ C can be
presented as the Riemann’s data of a trigonal curve A ∈ Trigk unique up
to the action of PGL(2,C).

Corollary

The set of Riemann’s data of trigonal curves can be identified with the
quotient space RDk = Trigk/PGL(2,C).
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A.K.Zvonkin. Graphs on Surfaces and Their Applications,
Springer-Verlag, 2004.)

Let TΓ be a tetratomic graph with ◦-vertices of valence 0 mod 4,
•-vertices of valence 0 mod 6 and fat-vertices of valence 0 mod 2. Due to
Lando and Zvonkin TΓ with the set {0, 1,∞, t1, . . . , tr} ⊂ C can be
presented as the Riemann’s data of a trigonal curve A ∈ Trigk unique up
to the action of PGL(2,C).

Corollary

The set of Riemann’s data of trigonal curves can be identified with the
quotient space RDk = Trigk/PGL(2,C).
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The Lyashko-Looijenga mapping

For a rational function f : CP1 → CP1 the Lyashko-Looijenga mapping is

LL(f) = (t− t1)l1 . . . (t− tr)lr ,
where t1, . . . , tr are all the finite critical values of f ,
li =

∑
x∈f−1(ti)

multx(f ′(x) = 0).

Lemma

Up to a multiplicative constant, LL(P (x)/Q(x)) is the discriminant of the
polynomial P (x)− tQ(x).

The homogeneous variant of the Lyashko-Looijenga mapping:
LL([P (x) : Q(x)]) = discrx(t0P (x)− t1Q(x)) ∈ CP2n−2 where
n = degP = degQ.
For a trigonal curve A(j) let LL(A) = LL(j).
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The Lyashko-Looijenga mapping

Trigk has a stratification depending on the
deg j = 6k − deg g.c.d.(b3, w2). The adjacency of strata is described in
terms of Gr(j):

vertical flex

contraction

Curve A:

G(jA):

Г(jA):

black fat vertex

There is the quotient mapping LL on RDk with LL = LL ◦ rd.

LL and LL are continuous on each stratum and on its image in RDk resp.
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A cell structure

deg g.c.d.(b3, w2) = p, Tp ⊂ Trigk is the corresponding stratum,
Pr,s ⊂ LL(Tp) = {t4k−2p(t− 1)3k−p(t− t1) . . . (t− t5k−2p−2)} is the
subset of polynomials with the following condition: the number of
different roots of the polynomial including 0, 1 is r, the number of
different arguments of the roots is s (the argument of 0 being π).
Pm =

⋃
r+s−4=m Pr,s.

Any connected component of Pm is convex since it’s determined by linear
equations and inequalities; thus it’s an open cell of dimension m.
The collection of the components of all the sets Pm is an open sell
partition of LL(Tp).

LL : Tp
rd−→ RDk

LL−→ CP12k−5p−2

The degree of the mapping LL is finite and constant over a cell (see
S.K.Lando, A.K.Zvonkin. Graphs on Surfaces and Their Applications,

Springer-Verlag, 2004.) ⇒ LL
−1

gives an open sell partition of RDk, the
adjacency of sells from distinct strata is described in terms of Gr(j).
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Generic and almost generic trigonal curves

A nonsingular curve A ∈ Trigk is almost generic if it’s nonsingular and has no
vertical flexes:

In particular deg j = 6k, ∞ ∈ CP1 is a regular value of j, and the roots of the
equations j(x) = 0 and j(x) = 1 have respectively multiplicities 0mod3 and
0mod2. If these multiplicities equals respectively 3 and 2 then an almost
generic curve is generic.
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Dual partition of the space of Riemann’s data

Let NSingk ⊂ Trigk be the space of nonsingular trigonal curves and
AlGenk ⊂ NSingk be the subspace of almost generic curves.

The closure of a cell of the space RDk is convex ⇒ the removal of a cell
which points are singular curves allows to contract the adjacent cells to
their boundaries.

There is a partition of the contracted RDk dual to its cell partition.

Let Sk2DualNSingk, Sk2DualAlGenk be the 2-skeletons of the dual
partitions of the spaces NSingk/PGL(2,C), AlGenk/PGL(2,C). They
turn out to be cell complexes.

codimRSymm > 2, so we may consider that NSingk and AlGenk have
no symmetric curves.

Since π1(PGL(2,C)) ∼= Z2, π2(PGL(2,C)) = 0, using the exact
sequences of the fiberings rd : NSingk → NSingk/PGL(2,C),
rd : AlGenk → AlGenk/PGL(2,C) we can prove

Theorem

There exist the exact sequences
0→ Z2 → π1(NSingk)→ π1(Sk2DualNSingk)→ 0,
0→ Z2 → π1(AlGenk)→ π1(Sk2DualAlGenk)→ 0.
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(homotopic loops are of the same color).



Summary Definitions Historical remarks The space of trigonal curves Trigk Graphs of a trigonal curve The Lyashko-Looijenga mapping A cell structure of Trigk/PGL(2,C) Our results

The fundamental group of the space of almost generic curves on Σ1

0→ Z2 → π1(AlGenk)→ π1(Sk2DualAlGenk)→ 0

Theorem

π1(Sk2DualAlGen1) =

〈(23), (24), [25], [34], (45), ˜(23), ˜(24), ˜[25], ˜[34], ˜(45), (123)(654);

[25]2 = [34]2 = 1, (23)(45) = (45)(23), [25][34] = [34][25], ˜[25]
2

=
˜[34]

2
= 1, ˜(23) ˜(45) = ˜(45) ˜(23), ˜[25] ˜[34] = ˜[34] ˜[25], (24)(123)(654) =

(123)(654)(24)〉

The square brackets denote the elements of order 2.
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The fundamental group of the space of nonsingular curves on Σ1

0→ Z2 → π1(NSingk)→ π1(Sk2DualNSingk)→ 0

Theorem

π1(Sk2DualNSing1) = 〈(23), (24), [25], [34], (45), ˜(24), ˜[25], ˜[34], (123)(654);

[25]2 = [34]2 = 1, (23)(45) = (45)(23), [25][34] = [34][25], ˜[25]
2

=
˜[34]

2
= 1, ˜[25] ˜[34] = ˜[34] ˜[25], (24)(123)(654) = (123)(654)(24)〉

π1(Sk2DualNSing1) is the quotient of π1(Sk2DualAlGen1) by
˜(23) = ˜(45) = 1.
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The braid group of sphere

Let Cn(S2) be the configuration space of non-ordered sets of n distinct
points of S2.
π1(Cn(S2)) = Hn is the braid group of sphere.

Generators σ1, . . . , σn−1 of Hn:

...
1 2 3 4 n-1 n

Half-twist

The relations between the generators: standard relations + an additional
one σ1 . . . σn−1σn−1 . . . σ1 = 1 (see Faddel E., Van Buskirk J. The braid
groups of E2 and S2 // Duke Math. J., 1962, v. 29, p.243-258.)
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A homomorphism to the braid group of sphere

The mapping AlGenk → C6k(S2) that takes a curve A ∈ AlGenk to the
set of roots of its discriminant induces the homomorphism
br : π1(AlGenk)→ π1(C6k(S2)) = H6k.

Choose the base points C0 ∈ AlGenk and D ∈ C6k(S2) for calculating
br(π1(AlGenk, C0)):

1

2 3 4 5

6 7

8 9 10 11

12 6k-5

6k-4

...

6k-3 6k-2 6k-1

6k

Solid modification gives the transposition of discriminant roots, whereas
dotted and waved ones leave the roots fixed.
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Solid modification gives the transposition of discriminant roots, whereas
dotted and waved ones leave the roots fixed.
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Almost generic curves

Theorem

The image of br : π1(AlGenk, C0)→ π1(C6k(S2), D) is generated by the
braids
σ3
1 , σ2,∆

4
1,3, σ3,∆

4
4,6, σ4, σ

3
5 ,∆

σ1σ
2
2σ1

1,6 , σσ6σ75 ,

σ3
7 , σ8,∆

4
7,9, σ9,∆

4
10,12, σ10, σ

3
11,∆

σ7σ
2
8σ7

7,12 , σσ12σ1311 , . . . ,

σ3
6k−5, σ6k−4,∆

4
6k−5,6k−3, σ6k−3,∆

4
6k−2,6k, σ6k−2, σ

3
6k−1,∆

σ6k−5σ
2
6k−4σ6k−5

6k−5,6k ,

where ab = b−1ab and ∆i,j = (σiσi+1 . . . σj−1)(σiσi+1 . . . σj−2) . . . (σiσi+1)σi
is the braid obtained by the rotation of the row of the lower ends of the strings
by the angle −π.
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Nonsingular curves

Theorem

There is a homomorphism
br : π1(NSingk)→ H6k/{σ3

1 = σ3
3i±1 = 1 ∀i = 1, . . . , 2k− 1}. Its image is

generated by the cosets corresponding to the braids

σ2, σ3, σ4,∆
σ1σ

2
2σ1

1,6 , σσ6σ75 ,

σ8, σ9, σ10,∆
σ7σ

2
8σ7

7,12 , σσ12σ1311 , . . .,

σ6k−4, σ6k−3, σ6k−2,∆
σ6k−5σ

2
6k−4σ6k−5

6k−5,6k .
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Thank you for your attention.


	Definitions
	Historical remarks
	The space of trigonal curves Trigk
	The j-invariant of a trigonal curve
	The action of PGL(2,C)
	The projection rd:TrigkTrigk/PGL(2,C)

	Graphs of a trigonal curve
	The Lyashko-Looijenga mapping
	A cell structure of Trigk/PGL(2,C)
	Our results

