Fundamental groups of spaces of trigonal curves

Stepan Orevkov (Steklov Mathematical Institute), Victor Zvonilov (North-Eastern Federal University, the speaker)

International Conference "Embedded Graphs", St.Petersburg

29.10.2014

Outline

- 2 Historical remarks
- 3 The space of trigonal curves $Trig_k$
 - The *j*-invariant of a trigonal curve
 - The action of $PGL(2, \mathbf{C})$
 - The projection $rd: Trig_k \to Trig_k/PGL(2, \mathbb{C})$
- Graphs of a trigonal curve
- The Lyashko-Looijenga mapping
- 6 A cell structure of $Trig_k/PGL(2, \mathbb{C})$

Our results

- The fundamental groups of the spaces of almost generic and of nonsingular curves on Σ_1
- ${f \bullet}$ The fundamental groups of the spaces of almost generic and of nonsingular curves on Σ_k

Introduction

• Braid group = the fundamental group of the space of complex polynomials with distinct roots.

- Natural generalizations of the braid group are the fundamental groups of spaces of nonsingular hypersurfaces on algebraic varieties.
- It is the case when we try to generalize to the bigger dimensions the method of braids in the theory of real algebraic curves.

Introduction

- Braid group = the fundamental group of the space of complex polynomials with distinct roots.
- Natural generalizations of the braid group are the fundamental groups of spaces of nonsingular hypersurfaces on algebraic varieties.
- It is the case when we try to generalize to the bigger dimensions the method of braids in the theory of real algebraic curves.

Introduction

- Braid group = the fundamental group of the space of complex polynomials with distinct roots.
- Natural generalizations of the braid group are the fundamental groups of spaces of nonsingular hypersurfaces on algebraic varieties.
- It is the case when we try to generalize to the bigger dimensions the method of braids in the theory of real algebraic curves.

Summary

- For the space of $PGL(2, \mathbb{C})$ -orbits of the space of complex trigonal curves on Hirzebruch surface Σ_k , a stratification and a cell structure of each stratum has been constructed using the Lyashko-Looijenga mapping. The cell structure is described via Grothendiek's *dessins d'enfants*.
- For the space of nonsingular complex trigonal curves on the Hirzebruch surface Σ_k and for its subspace of the curves with the simple roots of the discriminant of the curve equation, the fundamental groups (for k = 1) and their images in the spherical braid group (for any k) have been calculated.

Summary

- For the space of $PGL(2, \mathbb{C})$ -orbits of the space of complex trigonal curves on Hirzebruch surface Σ_k , a stratification and a cell structure of each stratum has been constructed using the Lyashko-Looijenga mapping. The cell structure is described via Grothendiek's *dessins d'enfants*.
- For the space of nonsingular complex trigonal curves on the Hirzebruch surface Σ_k and for its subspace of the curves with the simple roots of the discriminant of the curve equation, the fundamental groups (for k = 1) and their images in the spherical braid group (for any k) have been calculated.

Definitions

- $q: \Sigma_k \to P^1$ is the (complex) Hirzebruch surface, i.e. a rational ruled surface with the exceptional section $s, s^2 = -k < 0$. The fibers of q are vertical.
- A trigonal curve is a curve $A \subset \Sigma_k$ disjoint from $s(P^1)$, with the restriction $q: A \to P^1$ of degree 3 and being not a cube of a rational curve.
- Contraction: $s(P^1) \mapsto$ point

 $\begin{array}{l} \bigcap \\ \Sigma_k \\ \rightarrow \mathbf{P}(\mathbf{1}, \mathbf{1}, \mathbf{k}) - \text{ the weighted projective plane with the} \\ \cup \\ U \\ A \\ \rightarrow y^3 + b(x_0, x_1)y + w(x_0, x_1) = 0, \end{array}$

where $b,\,w$ are homogeneous polynomials of degrees $2k,\,3k$ and $y=\infty$ is the image of s.

 $\bullet \ b, \ w$ are determined by A uniquely up to the transformation

$$(b,w)\mapsto (t^2b,t^3w),\,t\in \mathbb{C}^*.$$

So the set of all trigonal curves on Σ_k is the weighted projective space $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ of complex dimension 5k + 1.

Definitions

- $q: \Sigma_k \to P^1$ is the (complex) Hirzebruch surface, i.e. a rational ruled surface with the exceptional section $s, s^2 = -k < 0$. The fibers of q are *vertical*.
- A trigonal curve is a curve $A \subset \Sigma_k$ disjoint from $s(P^1)$, with the restriction $q: A \to P^1$ of degree 3 and being not a cube of a rational curve.
- Contraction: $s(P^1) \mapsto \text{point}$ $\cap \qquad \cap$ $\Sigma_k \rightarrow \mathbf{P}(\mathbf{1}, \mathbf{1}, \mathbf{k}) - \text{the weighted projective plane with the}$ $\cup \qquad \cup \qquad \text{coordinates } x_0, x_1, y \text{ of weights } 1, 1, k.$ $A \rightarrow y^3 + b(x_0, x_1)y + w(x_0, x_1) = 0,$

where $b,\,w$ are homogeneous polynomials of degrees $2k,\,3k$ and $y=\infty$ is the image of s.

 $\bullet \ b, \ w$ are determined by A uniquely up to the transformation

$$(b,w)\mapsto (t^2b,t^3w),\,t\in\mathbb{C}^*.$$

So the set of all trigonal curves on Σ_k is the weighted projective space $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ of complex dimension 5k + 1.

Definitions

- $q: \Sigma_k \to P^1$ is the (complex) Hirzebruch surface, i.e. a rational ruled surface with the exceptional section $s, s^2 = -k < 0$. The fibers of q are *vertical*.
- A trigonal curve is a curve $A \subset \Sigma_k$ disjoint from $s(P^1)$, with the restriction $q: A \to P^1$ of degree 3 and being not a cube of a rational curve.
- Contraction: $s(P^1) \mapsto \text{point}$ $\cap \qquad \cap$ $\Sigma_k \rightarrow \mathbf{P}(\mathbf{1}, \mathbf{1}, \mathbf{k})$ - the weighted projective plane with the $\cup \qquad \cup \qquad \text{coordinates } x_0, x_1, y \text{ of weights } 1, 1, k.$ $A \rightarrow y^3 + b(x_0, x_1)y + w(x_0, x_1) = 0,$

where $b,\,w$ are homogeneous polynomials of degrees $2k,\,3k$ and $y=\infty$ is the image of s.

 \bullet $b,\,w$ are determined by A uniquely up to the transformation

 $(b,w)\mapsto (t^2b,t^3w),\,t\in \mathbf{C}^*.$

So the set of all trigonal curves on Σ_k is the weighted projective space $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ of complex dimension 5k + 1.

Definitions

- $q: \Sigma_k \to P^1$ is the (complex) Hirzebruch surface, i.e. a rational ruled surface with the exceptional section $s, s^2 = -k < 0$. The fibers of q are *vertical*.
- A trigonal curve is a curve $A \subset \Sigma_k$ disjoint from $s(P^1)$, with the restriction $q: A \to P^1$ of degree 3 and being not a cube of a rational curve.
- Contraction: $s(P^1) \mapsto \text{point}$ $\cap \qquad \cap$ $\Sigma_k \rightarrow \mathbf{P}(\mathbf{1}, \mathbf{1}, \mathbf{k})$ - the weighted projective plane with the $\cup \qquad \cup \qquad \text{coordinates } x_0, x_1, y \text{ of weights } 1, 1, k.$ $A \rightarrow y^3 + b(x_0, x_1)y + w(x_0, x_1) = 0,$

where $b,\,w$ are homogeneous polynomials of degrees $2k,\,3k$ and $y=\infty$ is the image of s.

• b, w are determined by A uniquely up to the transformation

$$(b,w)\mapsto (t^2b,t^3w), t\in \mathbf{C}^*.$$

So the set of all trigonal curves on Σ_k is the weighted projective space $\mathbf{P}(\mathbf{2}, \ldots, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{3})$ of complex dimension 5k + 1.

The origin of the problem

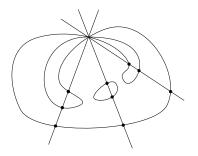


Figure : The pencil of lines gives a braid

Correspondence:

A curve with a singular point. The pencil of lines centered in the point.

A braid in 3 strings.

A surface of degree 5 with two singular points. The pencil of planes centered in the line through the points. A family of trigonal curves.

The origin of the problem

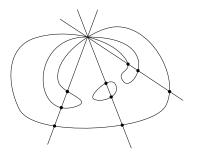


Figure : The pencil of lines gives a braid

Correspondence:

A curve with a singular point. The pencil of lines centered in the point.

A braid in 3 strings.

A surface of degree 5 with two singular points. The pencil of planes centered in the line through the points. A family of trigonal curves.

Historical remarks

• In 1999, the method we are using here (a modification of Grothendiek's dessin d'enfant) was offered in

S. Yu. Orevkov. Riemann existence theorem and construction of real algebraic curves//*Annales de la Faculté des Sciences de Toulouse, 2003, 12(4), p. 517-531,*

and applied to real trigonal curves also in

Degtyarev A., Itenberg I., Kharlamov V. On deformation types of real elliptic surfaces. // Amer.J.Math. 130(2008), no.6, p.1561-1627, where equivariant deformations of real trigonal curves on a ruled surface over a base of any genus were studied and an explicit description of the deformation classes of M- and (M - 1)-curves were obtained.

• This method was developed, both for complex and real trigonal curves, in the recent book

Degtyarev A. Topology of algebraic curves. An approach via dessins d'enfants. *de Gruyter Studies in Mathematics, 44. Walter de Gruyter* & Co., Berlin, 2012. xvi+393pp.

The j-invariant of a trigonal curve

j-invariant of the curve $A: y^3 + b(x)y + w(x) = 0$

- $d = 4b^3 + 27w^2$ is the discriminant in y of the curve equation. $j: \mathbf{P^1} \to \mathbf{P^1}, \mathbf{j} = 4\mathbf{b^3/d} = 1 - 27\mathbf{w^2/d}$ is the *j*-invariant of the curve A.
- $Gr(j) \subset \mathbf{P}^1 \times \mathbf{P}^1$ is the curve $4b^3(x)y_0 d(x)y_1 = 0$, $x = [x_0 : x_1], y = [y_0 : y_1] \in \mathbf{P}^1$. It's the union of the graph of the function j and the lines $g.c.d.(b^3, d) = 0$ with the corresponding multiplicities.

A and Gr(j) uniquely determine to each other.

The j-invariant of a trigonal curve

j-invariant of the curve $A: y^3 + b(x)y + w(x) = 0$

- $d = 4b^3 + 27w^2$ is the discriminant in y of the curve equation. $j: \mathbf{P^1} \to \mathbf{P^1}, \mathbf{j} = 4\mathbf{b^3/d} = 1 - 27\mathbf{w^2/d}$ is the *j*-invariant of the curve A.
- $Gr(j) \subset \mathbf{P}^1 \times \mathbf{P}^1$ is the curve $4b^3(x)y_0 d(x)y_1 = 0$, $x = [x_0 : x_1], y = [y_0 : y_1] \in \mathbf{P}^1$. It's the union of the graph of the function j and the lines $g.c.d.(b^3, d) = 0$ with the corresponding multiplicities.

A and Gr(j) uniquely determine to each other.

The *j*-invariant of a trigonal curve

j-invariant of the curve $A: y^3 + b(x)y + w(x) = 0$

- $Jconst \in \mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ is the set of trigonal curves on Σ_k with the constant *j*-invariant. $Jconst = \{y^3 + b(x)y + w(x) = 0 | b = \lambda a^2, w = a^3\} \cong P^1 \times P^k$. Denote $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3) \setminus Jconst$ by $Trig_k$ and $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ by $\overline{Trig_k}$.
- $Trig_k$ is nonsingular.

The *j*-invariant of a trigonal curve

j-invariant of the curve $A: y^3 + b(x)y + w(x) = 0$

- $Jconst \subset \mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ is the set of trigonal curves on Σ_k with the constant *j*-invariant. $Jconst = \{y^3 + b(x)y + w(x) = 0 | b = \lambda a^2, w = a^3\} \cong P^1 \times P^k$. Denote $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3) \setminus Jconst$ by $Trig_k$ and $\mathbf{P}(2, \ldots, 2, 3, \ldots, 3)$ by $\overline{Trig_k}$.
- $Trig_k$ is nonsingular.

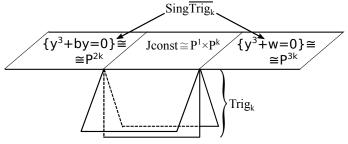


Figure : The space $\overline{Trig_k}$ of trigonal curves on Σ_k

The action of $PGL(2, \mathbf{C})$

• $PGL(2, \mathbf{C}) = AutP^1$ acts on the arguments of the polynomials b(x), w(x) in the curve equation. So it acts in $Trig_k$ and in the space $\{Gr(j)|j = 4b^3/d = 1 - 27w^2/d\}$.

• The closure of the orbit of a curve Gr(j) consists of this orbit and the set {triple of lines $(l_0x_0 + l_1x_1)^p(c_0x_0 + c_1x_1)^{6k-p}(b_1(\alpha)y_0 - d_1(\alpha)y_1) = 0|[l_0:l_1], [c_0:c_1] \in \mathbf{P}^1, \alpha = [a_0:a_1] \text{ is a root of degree } p \text{ of } g.c.d.(b^3,d)$ $b_1 = 4b^3/(a_0x_0 - a_1x_1)^p, d_1 = d/(a_0x_0 - a_1x_1)^p$ }

The action of $PGL(2, \mathbf{C})$

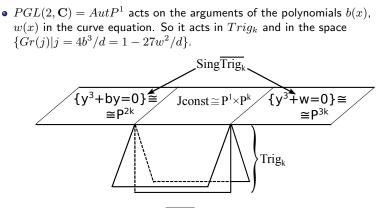


Figure : The space $\overline{Trig_k}$ of trigonal curves on Σ_k

• The closure of the orbit of a curve Gr(j) consists of this orbit and the set {triple of lines $(l_0x_0 + l_1x_1)^p(c_0x_0 + c_1x_1)^{6k-p}(b_1(\alpha)y_0 - d_1(\alpha)y_1) = 0|[l_0:l_1], [c_0:c_1] \in \mathbf{P^1}, \alpha = [a_0:a_1] \text{ is a root of degree } p \text{ of } g.c.d.(b^3,d)$ $b_1 = 4b^3/(a_0x_0 - a_1x_1)^p, d_1 = d/(a_0x_0 - a_1x_1)^p$ }

The action of $PGL(2, \mathbf{C})$

• $Trig_k/PGL(2, \mathbf{C})$ is second countable.

• A limit of a sequence in $Trig_k/PGL(2, \mathbb{C})$ is unique.

Corollary

 $Trig_k/PGL(2, \mathbb{C})$ is a Hausdorff space.

• It's not true for $\overline{Trig_k}/PGL(2, \mathbf{C})$

The action of $PGL(2, \mathbf{C})$

- $Trig_k/PGL(2, \mathbf{C})$ is second countable.
- A limit of a sequence in $Trig_k/PGL(2, \mathbb{C})$ is unique.

Corollary

 $Trig_k/PGL(2, \mathbb{C})$ is a Hausdorff space.

 $\bullet~$ It's not true for $\overline{Trig_k}/PGL(2,{\bf C})$

The action of $PGL(2, \mathbf{C})$

- $Trig_k/PGL(2, \mathbf{C})$ is second countable.
- A limit of a sequence in $Trig_k/PGL(2, \mathbb{C})$ is unique.

Corollary

 $Trig_k/PGL(2, \mathbb{C})$ is a Hausdorff space.

• It's not true for $\overline{Trig_k}/PGL(2, \mathbf{C})$

The action of $PGL(2, \mathbf{C})$

- $Trig_k/PGL(2, \mathbf{C})$ is second countable.
- A limit of a sequence in $Trig_k/PGL(2, \mathbb{C})$ is unique.

Corollary

 $Trig_k/PGL(2, \mathbb{C})$ is a Hausdorff space.

• It's not true for $\overline{Trig_k}/PGL(2,{\bf C})$

The projection $rd: Trig_k \to Trig_k / PGL(2, \mathbf{C})$

The projection $rd: Trig_k \to Trig_k/PGL(2, \mathbb{C})$

 A ∈ Trig_k is symmetric, if ∃g ∈ PGL(2, C) : g(A) = A. Symm is the set of all symmetric curves.

Theorem

Let $T_3 \subset Trig_k \setminus Symm$ be the set of curves with the total number of simple roots of the polynomials b(x), w(x), d(x) being not less than 3. Then the projection $rd: T_3 \to T_3/PGL(2, \mathbb{C})$ is a locally trivial principal $PGL(2, \mathbb{C})$ -fibration and $rd(T_3)$ is manifold.

The projection $rd: Trig_k \to Trig_k / PGL(2, \mathbf{C})$

The projection $rd: Trig_k \to Trig_k/PGL(2, \mathbb{C})$

 A ∈ Trig_k is symmetric, if ∃g ∈ PGL(2, C) : g(A) = A. Symm is the set of all symmetric curves.

Theorem

Let $T_3 \subset Trig_k \setminus Symm$ be the set of curves with the total number of simple roots of the polynomials b(x), w(x), d(x) being not less than 3. Then the projection $rd: T_3 \to T_3/PGL(2, \mathbb{C})$ is a locally trivial principal $PGL(2, \mathbb{C})$ -fibration and $rd(T_3)$ is manifold.

Trichotomic graph of a trigonal curve

 $A: y^3 + b(x)y + w(x) = 0$ **S. Yu. Orevkov.** Riemann existence theorem and construction of real algebraic curves//*Annales de la Faculté des Sciences de Toulouse, 2003, 12(4), p. 517-531*:

A trigonal curve up to the transformation \leftrightarrow the colored graph $\Gamma(j) = j^{-1}(\mathbb{R}P^1)$ $(x, y) \mapsto (x, \lambda y), \lambda \neq 0$ on S^2

$$S^2 \cong {f C}P^1 \xrightarrow{j} {f C}P^1 \supset {\Bbb R}P^1$$
, $j = rac{4b^3}{d} = 1 - rac{27w^2}{d}$

Trichotomic graph $\Gamma(j)$:

For A with j = const we have no $\Gamma(j)$ and use only Gr(j).

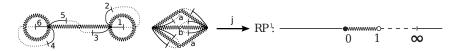
Trichotomic graph of a trigonal curve

 $A: y^3 + b(x)y + w(x) = 0$ **S. Yu. Orevkov.** Riemann existence theorem and construction of real algebraic curves//*Annales de la Faculté des Sciences de Toulouse, 2003, 12(4), p. 517-531*:

A trigonal curve up to the transformation \leftrightarrow the colored graph $\Gamma(j) = j^{-1}(\mathbb{R}P^1)$ $(x, y) \mapsto (x, \lambda y), \lambda \neq 0$ on S^2

$$S^2 \cong \mathbf{C}P^1 \xrightarrow{j} \mathbf{C}P^1 \supset \mathbb{R}P^1$$
, $j = \frac{4b^3}{d} = 1 - \frac{27w^2}{d}$

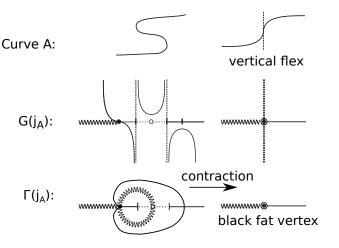
Trichotomic graph $\Gamma(j)$:



For A with j = const we have no $\Gamma(j)$ and use only Gr(j).

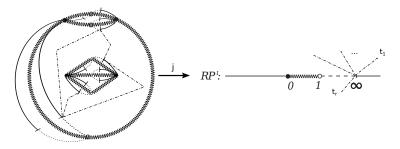
Fat vertices

A fat vertex corresponds to a common root x of b, w. There are 3 kinds of fat vertices: •-vertex, \circ -vertex and waved-vertex depending on $3mult_x(b(x) = 0) >, <, = 2mult_x(w(x) = 0)$. For \circ -vertex and waved-vertex x is a singular point of the trigonal curve.



Tetratomic graph of a trigonal curve

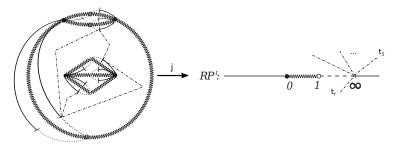
We orient the faces of a trichotomic graph Γ in the chessboard order and obtain a *tetratomic graph* $T\Gamma$ by a partition of every face of Γ on simply connected parts; the boundary of every part can be glued into a wedge of colored $\mathbb{R}\mathbf{P}^1$ and segments which number r_+ or r_- depends only on the orientation of the face of Γ , the center of the wedge being ∞ .



The tetratomic graph of a curve $A(j) \in Trig_k$: t_1, \ldots, t_r are all the imaginary critical values of j, St(j) is the star in \mathbb{CP}^1 with the center at ∞ and the ray ends in t_i (a ray may contain another one), $T\Gamma(j) = \Gamma(j) \cup j^{-1}(\mathrm{St}(j))$ is the tetratomic graph of a trigonal curve.

Tetratomic graph of a trigonal curve

We orient the faces of a trichotomic graph Γ in the chessboard order and obtain a *tetratomic graph* $T\Gamma$ by a partition of every face of Γ on simply connected parts; the boundary of every part can be glued into a wedge of colored $\mathbb{R}\mathbf{P}^1$ and segments which number r_+ or r_- depends only on the orientation of the face of Γ , the center of the wedge being ∞ .



The tetratomic graph of a curve $A(j) \in Trig_k$: t_1, \ldots, t_r are all the imaginary critical values of j, St(j) is the star in \mathbb{CP}^1 with the center at ∞ and the ray ends in t_i (a ray may contain another one), $T\Gamma(j) = \Gamma(j) \cup j^{-1}(\mathrm{St}(j))$ is the tetratomic graph of a trigonal curve.

Riemann's data of a trigonal curve

- The pair (TΓ(j), {t₁,...,t_q}) with {t₁,...,t_q} being the set of all critical values of j is the *Riemann's data* of the curve A(j) (see S.K.Lando, A.K.Zvonkin. Graphs on Surfaces and Their Applications, Springer-Verlag, 2004.)
- Let TΓ be a tetratomic graph with o-vertices of valence 0 mod 4,
 -vertices of valence 0 mod 6 and fat-vertices of valence 0 mod 2. Due to Lando and Zvonkin TΓ with the set {0,1,∞,t₁,...,t_r} ⊂ C can be presented as the Riemann's data of a trigonal curve A ∈ Trig_k unique up to the action of PGL(2, C).

Corollary

The set of Riemann's data of trigonal curves can be identified with the quotient space $RD_k = Trig_k / PGL(2, \mathbb{C})$.

Riemann's data of a trigonal curve

- The pair (TΓ(j), {t₁,...,t_q}) with {t₁,...,t_q} being the set of all critical values of j is the *Riemann's data* of the curve A(j) (see S.K.Lando, A.K.Zvonkin. Graphs on Surfaces and Their Applications, Springer-Verlag, 2004.)
- Let TΓ be a tetratomic graph with o-vertices of valence 0 mod 4,
 -vertices of valence 0 mod 6 and fat-vertices of valence 0 mod 2. Due to Lando and Zvonkin TΓ with the set {0, 1, ∞, t₁, ..., t_r} ⊂ C can be presented as the Riemann's data of a trigonal curve A ∈ Trig_k unique up to the action of PGL(2, C).

Corollary

The set of Riemann's data of trigonal curves can be identified with the quotient space $RD_k = Trig_k/PGL(2, \mathbb{C})$.

Riemann's data of a trigonal curve

- The pair (TΓ(j), {t₁,...,t_q}) with {t₁,...,t_q} being the set of all critical values of j is the *Riemann's data* of the curve A(j) (see S.K.Lando, A.K.Zvonkin. Graphs on Surfaces and Their Applications, Springer-Verlag, 2004.)
- Let TΓ be a tetratomic graph with o-vertices of valence 0 mod 4,
 -vertices of valence 0 mod 6 and fat-vertices of valence 0 mod 2. Due to Lando and Zvonkin TΓ with the set {0,1,∞,t₁,...,t_r} ⊂ C can be presented as the Riemann's data of a trigonal curve A ∈ Trig_k unique up to the action of PGL(2, C).

Corollary

The set of Riemann's data of trigonal curves can be identified with the quotient space $RD_k = Trig_k/PGL(2, \mathbb{C})$.

The Lyashko-Looijenga mapping

• For a rational function $f: \mathbf{CP^1} \to \mathbf{CP^1}$ the Lyashko-Looijenga mapping is

$$LL(f) = (t - t_1)^{l_1} \dots (t - t_r)^{l_r},$$

where t_1, \ldots, t_r are all the finite critical values of f, $l_i = \sum_{x \in f^{-1}(t_i)} mult_x(f'(x) = 0).$

Lemma

Up to a multiplicative constant, LL(P(x)/Q(x)) is the discriminant of the polynomial P(x) - tQ(x).

• The homogeneous variant of the Lyashko-Looijenga mapping: $LL([P(x) : Q(x)]) = discr_x(t_0P(x) - t_1Q(x)) \in \mathbb{CP}^{2n-2}$ where $n = \deg P = \deg Q.$ For a trigonal curve A(j) let LL(A) = LL(j).

The Lyashko-Looijenga mapping

• For a rational function $f: \mathbf{CP^1} \to \mathbf{CP^1}$ the Lyashko-Looijenga mapping is

$$LL(f) = (t - t_1)^{l_1} \dots (t - t_r)^{l_r},$$

where t_1, \ldots, t_r are all the finite critical values of f, $l_i = \sum_{x \in f^{-1}(t_i)} mult_x(f'(x) = 0).$

Lemma

Up to a multiplicative constant, LL(P(x)/Q(x)) is the discriminant of the polynomial P(x) - tQ(x).

• The homogeneous variant of the Lyashko-Looijenga mapping: $LL([P(x) : Q(x)]) = discr_x(t_0P(x) - t_1Q(x)) \in \mathbb{CP}^{2n-2}$ where $n = \deg P = \deg Q.$ For a trigonal curve A(j) let LL(A) = LL(j).

The Lyashko-Looijenga mapping

• For a rational function $f: \mathbf{CP^1} \to \mathbf{CP^1}$ the Lyashko-Looijenga mapping is

$$LL(f) = (t - t_1)^{l_1} \dots (t - t_r)^{l_r},$$

where t_1, \ldots, t_r are all the finite critical values of f, $l_i = \sum_{x \in f^{-1}(t_i)} mult_x(f'(x) = 0).$

Lemma

Up to a multiplicative constant, LL(P(x)/Q(x)) is the discriminant of the polynomial P(x) - tQ(x).

• The homogeneous variant of the Lyashko-Looijenga mapping: $LL([P(x) : Q(x)]) = discr_x(t_0P(x) - t_1Q(x)) \in \mathbb{CP}^{2n-2}$ where $n = \deg P = \deg Q.$ For a trigonal curve A(j) let LL(A) = LL(j).

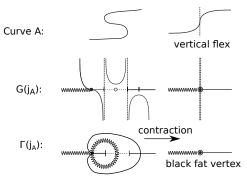
The Lyashko-Looijenga mapping

• $Trig_k$ has a stratification depending on the $\deg j = 6k - \deg g.c.d.(b^3, w^2)$. The adjacency of strata is described in terms of Gr(j):

- There is the quotient mapping \overline{LL} on RD_k with $LL = \overline{LL} \circ rd$.
- LL and \overline{LL} are continuous on each stratum and on its image in RD_k resp.

The Lyashko-Looijenga mapping

• $Trig_k$ has a stratification depending on the $\deg j = 6k - \deg g.c.d.(b^3, w^2)$. The adjacency of strata is described in terms of Gr(j):

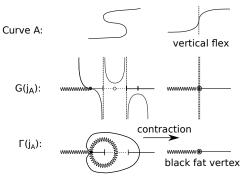


• There is the quotient mapping \overline{LL} on RD_k with $LL = \overline{LL} \circ rd$.

• LL and \overline{LL} are continuous on each stratum and on its image in RD_k resp.

The Lyashko-Looijenga mapping

• $Trig_k$ has a stratification depending on the $\deg j = 6k - \deg g.c.d.(b^3, w^2)$. The adjacency of strata is described in terms of Gr(j):



- There is the quotient mapping \overline{LL} on RD_k with $LL = \overline{LL} \circ rd$.
- LL and \overline{LL} are continuous on each stratum and on its image in RD_k resp.

A cell structure

- deg $g.c.d.(b^3, w^2) = p$, $T_p \subset Trig_k$ is the corresponding stratum, $P_{r,s} \subset LL(T_p) = \{t^{4k-2p}(t-1)^{3k-p}(t-t_1)\dots(t-t_{5k-2p-2})\}$ is the subset of polynomials with the following condition: the number of different roots of the polynomial including 0, 1 is r, the number of different arguments of the roots is s (the argument of 0 being π). $P_m = \bigcup_{r+s-4=m} P_{r,s}$.
- Any connected component of P_m is convex since it's determined by linear equations and inequalities; thus it's an open cell of dimension m. The collection of the components of all the sets P_m is an open sell partition of $LL(T_p)$.

• $LL: T_p \xrightarrow{rd} RD_k \xrightarrow{\overline{LL}} CP^{12k-5p-2}$

The degree of the mapping \overline{LL} is finite and constant over a cell (see **S.K.Lando, A.K.Zvonkin**. Graphs on Surfaces and Their Applications, Springer-Verlag, 2004.) $\Rightarrow \overline{LL}^{-1}$ gives an open sell partition of RD_k , the adjacency of sells from distinct strata is described in terms of Gr(j).

A cell structure

- deg $g.c.d.(b^3, w^2) = p$, $T_p \subset Trig_k$ is the corresponding stratum, $P_{r,s} \subset LL(T_p) = \{t^{4k-2p}(t-1)^{3k-p}(t-t_1)\dots(t-t_{5k-2p-2})\}$ is the subset of polynomials with the following condition: the number of different roots of the polynomial including 0, 1 is r, the number of different arguments of the roots is s (the argument of 0 being π). $P_m = \bigcup_{r+s-4=m} P_{r,s}$.
- Any connected component of P_m is convex since it's determined by linear equations and inequalities; thus it's an open cell of dimension m. The collection of the components of all the sets P_m is an open sell partition of $LL(T_p)$.
- $LL: T_p \xrightarrow{rd} RD_k \xrightarrow{\overline{LL}} \mathbf{CP^{12k-5p-2}}$

The degree of the mapping \overline{LL} is finite and constant over a cell (see **S.K.Lando, A.K.Zvonkin**. Graphs on Surfaces and Their Applications, Springer-Verlag, 2004.) $\Rightarrow \overline{LL}^{-1}$ gives an open sell partition of RD_k , the adjacency of sells from distinct strata is described in terms of Gr(j).

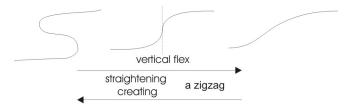
A cell structure

- deg $g.c.d.(b^3, w^2) = p$, $T_p \subset Trig_k$ is the corresponding stratum, $P_{r,s} \subset LL(T_p) = \{t^{4k-2p}(t-1)^{3k-p}(t-t_1)\dots(t-t_{5k-2p-2})\}$ is the subset of polynomials with the following condition: the number of different roots of the polynomial including 0, 1 is r, the number of different arguments of the roots is s (the argument of 0 being π). $P_m = \bigcup_{r+s-4=m} P_{r,s}$.
- Any connected component of P_m is convex since it's determined by linear equations and inequalities; thus it's an open cell of dimension m. The collection of the components of all the sets P_m is an open sell partition of $LL(T_p)$.
- $LL: T_p \xrightarrow{rd} RD_k \xrightarrow{\overline{LL}} \mathbf{CP^{12k-5p-2}}$

The degree of the mapping \overline{LL} is finite and constant over a cell (see **S.K.Lando, A.K.Zvonkin.** Graphs on Surfaces and Their Applications, Springer-Verlag, 2004.) $\Rightarrow \overline{LL}^{-1}$ gives an open sell partition of RD_k , the adjacency of sells from distinct strata is described in terms of Gr(j).

Generic and almost generic trigonal curves

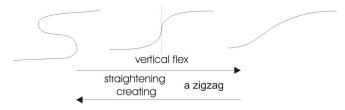
A nonsingular curve $A \in Trig_k$ is almost generic if it's nonsingular and has no vertical flexes:



In particular deg j = 6k, $\infty \in \mathbb{CP}^1$ is a regular value of j, and the roots of the equations j(x) = 0 and j(x) = 1 have respectively multiplicities $0 \mod 3$ and $0 \mod 2$. If these multiplicities equals respectively 3 and 2 then an almost generic curve is *generic*.

Generic and almost generic trigonal curves

A nonsingular curve $A \in Trig_k$ is *almost generic* if it's nonsingular and has no vertical flexes:



In particular deg j = 6k, $\infty \in \mathbb{CP}^1$ is a regular value of j, and the roots of the equations j(x) = 0 and j(x) = 1 have respectively multiplicities $0 \mod 3$ and $0 \mod 2$. If these multiplicities equals respectively 3 and 2 then an almost generic curve is *generic*.

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space RDk is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences $0 \rightarrow \mathbf{Z}_2 \rightarrow \pi_1(NSing_k) \rightarrow \pi_1(Sk_2DualNSing_k) \rightarrow 0$ $0 \rightarrow \mathbf{Z}_2 \rightarrow \pi_1(AlGen_k) \rightarrow \pi_1(Sk_2DualAlGen_k) \rightarrow 0$

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space RDk is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences $0 \to \mathbb{Z}_2 \to \pi_1(NSing_k) \to \pi_1(Sk_2DualNSing_k) \to 0$ $0 \to \mathbb{Z}_2 \to \pi_1(AlGen_k) \to \pi_1(Sk_2DualAlGen_k) \to 0$

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space RDk is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences $0 \rightarrow \mathbb{Z}_2 \rightarrow \pi_1(NSing_k) \rightarrow \pi_1(Sk_2DualNSing_k) \rightarrow 0$ $0 \rightarrow \mathbb{Z}_2 \rightarrow \pi_1(AlGen_k) \rightarrow \pi_1(Sk_2DualAlGen_k) \rightarrow 0$

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space *RD_k* is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences $0 \to \mathbb{Z}_2 \to \pi_1(NSing_k) \to \pi_1(Sk_2DualNSing_k) \to 0$ $0 \to \mathbb{Z}_2 \to \pi_1(AlGen_k) \to \pi_1(Sk_2DualAlGen_k) \to 0$

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space RDk is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences $0 \rightarrow \mathbb{Z}_2 \rightarrow \pi_1(NSing_k) \rightarrow \pi_1(Sk_2DualNSing_k) \rightarrow 0$ $0 \rightarrow \mathbb{Z}_2 \rightarrow \pi_1(AlGen_k) \rightarrow \pi_1(Sk_2DualAlGen_k) \rightarrow 0$

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space RDk is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences $0 \rightarrow \mathbb{Z}_2 \rightarrow \pi_1(NSing_k) \rightarrow \pi_1(Sk_2DualNSing_k) \rightarrow 0,$ $0 \rightarrow \mathbb{Z}_2 \rightarrow \pi_1(AlGen_k) \rightarrow \pi_1(Sk_2DualAlGen_k) \rightarrow 0.$

Dual partition of the space of Riemann's data

- Let $NSing_k \subset Trig_k$ be the space of nonsingular trigonal curves and $AlGen_k \subset NSing_k$ be the subspace of almost generic curves.
- The closure of a cell of the space RDk is convex ⇒ the removal of a cell which points are singular curves allows to contract the adjacent cells to their boundaries.
- There is a partition of the contracted RD_k dual to its cell partition.
- Let $Sk_2DualNSing_k$, $Sk_2DualAlGen_k$ be the 2-skeletons of the dual partitions of the spaces $NSing_k/PGL(2, \mathbb{C})$, $AlGen_k/PGL(2, \mathbb{C})$. They turn out to be cell complexes.
- $codim_{\mathbb{R}}Symm>2$, so we may consider that $NSing_k$ and $AlGen_k$ have no symmetric curves.
- Since π₁(PGL(2, C)) ≅ Z₂, π₂(PGL(2, C)) = 0, using the exact sequences of the fiberings rd : NSing_k → NSing_k/PGL(2, C), rd : AlGen_k → AlGen_k/PGL(2, C) we can prove

Theorem

There exist the exact sequences

 $0 \rightarrow \mathbf{Z}_2 \rightarrow \pi_1(NSing_k) \rightarrow \pi_1(Sk_2DualNSing_k) \rightarrow 0$,

 $0 \to \mathbf{Z}_2 \to \pi_1(AlGen_k) \to \pi_1(Sk_2DualAlGen_k) \to 0.$

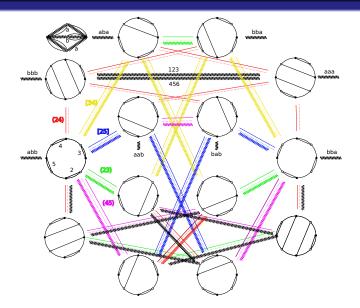


Figure : 2-skeleton of the dual partition of the space $AlGen_1/PGL(2, \mathbb{C})$ (homotopic loops are of the same color).

The fundamental group of the space of almost generic curves on Σ_1

 $0 \rightarrow \mathbf{Z}_2 \rightarrow \pi_1(AlGen_k) \rightarrow \pi_1(Sk_2DualAlGen_k) \rightarrow 0$

Theorem

$$\pi_1(Sk_2DualAlGen_1) = \langle (23), (24), [25], [34], (45), (23), (24), [25], [34], (45), (123)(654); [25]^2 = [34]^2 = 1, (23)(45) = (45)(23), [25][34] = [34][25], [25]^2 = [34]^2 = 1, (23)(45) = (45)(23), [25][34] = [34][25], (24)(123)(654) = (123)(654)(24) \rangle$$

The square brackets denote the elements of order 2.

The fundamental group of the space of nonsingular curves on Σ_1

 $0 \to \mathbf{Z}_2 \to \pi_1(NSing_k) \to \pi_1(Sk_2DualNSing_k) \to 0$

Theorem

$$\pi_1(Sk_2DualNSing_1) = \langle (23), (24), [25], [34], (45), (24), [25], [34], (123)(654); \\ [25]^2 = [34]^2 = 1, (23)(45) = (45)(23), [25][34] = [34][25], [25]^2 = \\ [34]^2 = 1, [25][34] = [34][25], (24)(123)(654) = (123)(654)(24)\rangle$$

 $\pi_1(Sk_2DualNSing_1)$ is the quotient of $\pi_1(Sk_2DualAlGen_1)$ by $(\tilde{23}) = (\tilde{45}) = 1.$

The braid group of sphere

- Let C_n(S²) be the configuration space of non-ordered sets of n distinct points of S². π₁(C_n(S²)) = H_n is the braid group of sphere.
- Generators $\sigma_1, \ldots, \sigma_{n-1}$ of H_n :

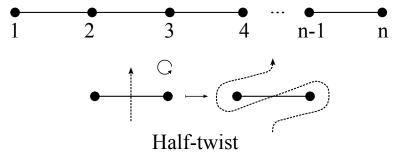
• The relations between the generators: standard relations + an additional one $\sigma_1 \ldots \sigma_{n-1} \sigma_{n-1} \ldots \sigma_1 = 1$ (see Faddel E., Van Buskirk J. The braid groups of E^2 and S^2 // Duke Math. J., 1962, v. 29, p.243-258.)

The braid group of sphere

• Let $C_n(S^2)$ be the configuration space of non-ordered sets of n distinct points of S^2 .

 $\pi_1(C_n(S^2)) = H_n$ is the braid group of sphere.

• Generators $\sigma_1, \ldots, \sigma_{n-1}$ of H_n :



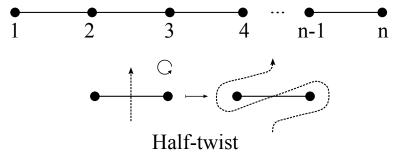
• The relations between the generators: standard relations + an additional one $\sigma_1 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_1 = 1$ (see Faddel E., Van Buskirk J. The braid groups of E^2 and S^2 // Duke Math. J., 1962, v. 29, p.243-258.)

The braid group of sphere

• Let $C_n(S^2)$ be the configuration space of non-ordered sets of n distinct points of S^2 .

 $\pi_1(C_n(S^2)) = H_n$ is the braid group of sphere.

• Generators $\sigma_1, \ldots, \sigma_{n-1}$ of H_n :



• The relations between the generators: standard relations + an additional one $\sigma_1 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_1 = 1$ (see Faddel E., Van Buskirk J. The braid groups of E^2 and S^2 // Duke Math. J., 1962, v. 29, p.243-258.)

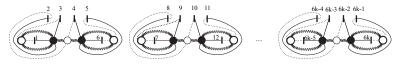
A homomorphism to the braid group of sphere

- The mapping $AlGen_k \to C_{6k}(S^2)$ that takes a curve $A \in AlGen_k$ to the set of roots of its discriminant induces the homomorphism $br : \pi_1(AlGen_k) \to \pi_1(C_{6k}(S^2)) = H_{6k}.$
- Choose the base points $C_0 \in AlGen_k$ and $D \in C_{6k}(S^2)$ for calculating $br(\pi_1(AlGen_k, C_0))$:

• Solid modification gives the transposition of discriminant roots, whereas dotted and waved ones leave the roots fixed.

A homomorphism to the braid group of sphere

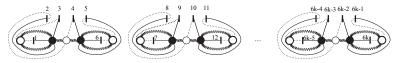
- The mapping AlGen_k → C_{6k}(S²) that takes a curve A ∈ AlGen_k to the set of roots of its discriminant induces the homomorphism br : π₁(AlGen_k) → π₁(C_{6k}(S²)) = H_{6k}.
- Choose the base points $C_0 \in AlGen_k$ and $D \in C_{6k}(S^2)$ for calculating $br(\pi_1(AlGen_k, C_0))$:



• Solid modification gives the transposition of discriminant roots, whereas dotted and waved ones leave the roots fixed.

A homomorphism to the braid group of sphere

- The mapping $AlGen_k \to C_{6k}(S^2)$ that takes a curve $A \in AlGen_k$ to the set of roots of its discriminant induces the homomorphism $br : \pi_1(AlGen_k) \to \pi_1(C_{6k}(S^2)) = H_{6k}.$
- Choose the base points $C_0 \in AlGen_k$ and $D \in C_{6k}(S^2)$ for calculating $br(\pi_1(AlGen_k, C_0))$:



• Solid modification gives the transposition of discriminant roots, whereas dotted and waved ones leave the roots fixed.

Almost generic curves

Theorem

The image of $br: \pi_1(AlGen_k, C_0) \to \pi_1(C_{6k}(S^2), D)$ is generated by the braids $\sigma_1^3, \sigma_2, \Delta_{1,3}^4, \sigma_3, \Delta_{4,6}^4, \sigma_4, \sigma_5^3, \Delta_{1,6}^{\sigma_1\sigma_2^2\sigma_1}, \sigma_5^{\sigma_6\sigma_7},$ $\sigma_7^3, \sigma_8, \Delta_{7,9}^4, \sigma_9, \Delta_{10,12}^4, \sigma_{10}, \sigma_{11}^{31}, \Delta_{7,12}^{\sigma_7\sigma_8^2\sigma_7}, \sigma_{11}^{\sigma_{12}\sigma_{13}}, \dots,$ $\sigma_{6k-5}^3, \sigma_{6k-4}, \Delta_{6k-5,6k-3}^4, \sigma_{6k-3}, \Delta_{6k-2,6k}^4, \sigma_{6k-2}, \sigma_{6k-1}^3, \Delta_{6k-5,6k}^{\sigma_{6k-5}\sigma_{6k-4}^2}, \sigma_{6k-5}^3,$ where $a^b = b^{-1}ab$ and $\Delta_{i,j} = (\sigma_i\sigma_{i+1}\dots\sigma_{j-1})(\sigma_i\sigma_{i+1}\dots\sigma_{j-2})\dots(\sigma_i\sigma_{i+1})\sigma_i$ is the braid obtained by the rotation of the row of the lower ends of the strings by the angle $-\pi$.

Nonsingular curves

Theorem

There is a homomorphism $\frac{br}{br}: \pi_1(NSing_k) \to H_{6k}/\{\sigma_1^3 = \sigma_{3i\pm 1}^3 = 1 \ \forall i = 1, \dots, 2k-1\}. \text{ Its image is}$ generated by the cosets corresponding to the braids $\sigma_2, \sigma_3, \sigma_4, \Delta_{1,6}^{\sigma_1 \sigma_2^2 \sigma_1}, \sigma_5^{\sigma_6 \sigma_7}, \sigma_8, \sigma_9, \sigma_{10}, \Delta_{7,12}^{\sigma_7 \sigma_8^3 \sigma_7}, \sigma_{11}^{\sigma_{12} \sigma_{13}}, \dots, \sigma_{6k-4}, \sigma_{6k-3}, \sigma_{6k-2}, \Delta_{6k-5,6k}^{\sigma_{6k-4} \sigma_{6k-5}}.$

Thank you for your attention.